North Carolina Deep Decarbonization Pathways Analysis
Public Engagement Session #2

October 18th, 2022

Office of Governor Roy Cooper

Energy + Environmental Economics
Agenda

+ Welcome – Office of Governor Roy Cooper (10 min)
+ E3 Background and Project Overview – E3 (10 min)
+ Draft Scenario Results – E3 (40 min)
 • Reference Scenario and IRA
 • Mitigation Scenario Results
 • Preliminary Key Findings
+ Public Input and Next Steps – E3 and Governor’s Office (30 min)
 • Feedback + Q&A
 • Next Steps
Executive Order No. 246 signed by Governor Cooper in January 2022.

Establishes new statewide goals to:

• Reduce statewide greenhouse gas (GHG) emissions at least 50% below 2005 levels by 2030 and achieve net-zero GHG emissions as soon as possible and no later than 2050; and

• Increase registered zero-emission vehicles (ZEVs) to at least 1,250,000 by 2030 and increase the sale of ZEVs so that 50% of in-state sales of new vehicles are zero-emission by 2030.

Directs numerous actions to achieve goals in a manner that centers environmental justice and maximizes public health and economic benefits for all North Carolinians.
EO 246 directs the development of a North Carolina Deep Decarbonization Pathways Analysis ("Pathways Analysis") that evaluates potential emission-reduction pathways to achieve these goals.

+ Project Goals

- Analyze various technologically feasible GHG emissions reduction pathways to achieve economy-wide 2025, 2030 and 2050 GHG targets.
- Identify high-level policy and planning takeaways that will inform near-term, mid-term and long-term decarbonization efforts.
- Equip policymakers and stakeholders with a better understanding of how to effectively reduce emissions across the economy and within specific sectors, building on extensive policy efforts underway and creating synergies with existing initiatives.

North Carolina Net Greenhouse Gas Emissions

Projection based on the 2022 NC GHG Inventory, developed using combination of EPA’s Projections Tool module within State Inventory Tool and sector-specific data sources (e.g. MVOES for transportation, Duke forecasts) and incorporate the impact of HB 951.
Background on Project
Project Scope

++ Goals

- An analysis of various technologically feasible GHG emissions reduction pathways to achieve NC's economy-wide 2030 and 2050 GHG targets (50 by 2030 and net-zero by 2050)

- Identify high-level policy and planning takeaways

++ Key Tasks and Timeline

<table>
<thead>
<tr>
<th>#</th>
<th>Task</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Kickoff and Scenario Scoping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Decarbonization Pathways Scenario Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Stakeholder Engagement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Final Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Energy + Environmental Economics](image-url)
Stakeholder Engagement

<table>
<thead>
<tr>
<th>External Engagement</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Interagency Steering Committee Meetings</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
</tr>
<tr>
<td>2 Technical Advisory Group (TAG) Meetings</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td></td>
</tr>
<tr>
<td>3 Targeted Stakeholder Outreach</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td></td>
</tr>
<tr>
<td>4 General Public Engagement Meetings</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td>💼</td>
<td></td>
</tr>
</tbody>
</table>

Aug 11 Oct 18 TBD
Planned and Proposed Public Engagement Sessions

<table>
<thead>
<tr>
<th>Planned and Proposed Public Engagement Sessions</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
</tr>
</thead>
</table>

+ **Public Engagement Session #1 (August 11):** Introducing the pathways analysis scope, process and scenario design and soliciting public feedback

+ **Public Engagement Session #2 (Today):** Presenting draft scenario results and soliciting public feedback

+ **Public Engagement Session #3 (TBD in Dec):** Presenting updated final scenario results and soliciting public feedback
Benchmarking and Draft Reference Scenario Results
Steps of a PATHWAYS study

1. Measure current greenhouse gas emissions in North Carolina

2. Estimate future emissions based on current trends and existing policies

3. Evaluate impact of new potential measures and actions that would help the state meet climate goals

Current emissions profile based on the latest 2022 NC State Greenhouse Gas Inventory
Current Emissions and Initiatives by Sector

1. North Carolina Gross GHG Emissions Profile

- Agriculture & Waste: 12%
- Other: 6%
- Buildings: 7%
- Industry: 6%
- Transportation: 36%
- Electric Power: 33%

Note: Emissions profile is based on the latest 2022 NC State GHG Inventory. All GHG emissions associated with consumption of electricity in buildings, industry, and transport are accounted for in the “Electric Power” category.

2. Ongoing Sector-focused Initiatives in NC

- Clean Transportation Plan
- Carbon Plan under the requirement of House Bill 951, NC Clean Energy Plan
- Building Code updates
- Natural and Working Lands Action Plan
- Disbursement of applicable state and federal funding
Priority actions that impact emissions

Buildings
- Increased sales of high efficiency appliances
- Adoption of improved building shells in both new and retrofit buildings
- All-electric new construction standards
- Increased sales of electrified devices for all end uses (space and water heating, drying, cooking)

Clean Electricity
- Scale up of renewable electricity sources (wind and solar), and battery storage
- Targeted role for zero-carbon firm generation

Transportation
- Improved fuel economy for new vehicles sold
- Reductions in vehicle-miles traveled through transit and smart growth
- Increased sales of zero-emission vehicles (ZEVs), including, battery-electric and hydrogen fuel cell vehicles

Decarbonized Fuels
- Production of advanced biofuels with sustainable biomass feedstocks
- Production of green hydrogen through electrolysis using renewable electricity

Carbon Sequestration
- Reforestation and restoration to enhance carbon sinks from natural and working lands
- Deployment of negative emissions technologies such as direct air capture of CO2 (DAC)
North Carolina Greenhouse Gas Emissions Reduction Measures
Reference Scenario

- 8% zero-emission vehicle sales in passenger vehicles
- 10% zero-emission vehicle sales in medium-duty vehicles due to IRA* incentives
- 400,000 ZEVs on the road
- 65% reduction in electric-sector GHG emissions below 2005 levels due to HB 951
- Further improved fuel economy for new passenger cars and light trucks due to recent federal standards
- Electric heat pump sales ramp up from ~40% to ~50% due to IRA* incentives
- Existing ethanol and biodiesel blends continue; hydrogen use in industry begins due to IRA* incentives
- Population and total vehicle miles travelled (VMT) continue to grow at 0.94%/year, while households and commercial square footage are projected to grow at 1.6%/year and 1%/year respectively.
- 35% zero-emission vehicle sales in passenger vehicles, 2 million zero-emission passenger vehicles on the road
- 85% reduction in electric-sector GHG emissions below 2005 levels due to HB 951
- 13 TBtu of hydrogen use in industry replacing natural gas due to continued trend post IRA* incentives
- Existing carbon sequestration through natural and working land declines slightly over time due to projected loss of forests and sea level rise impacts

*Inflation Reduction Act of 2022

Note: Impacts of the Inflation Reduction Act are uncertain, current assumptions in appendix
Scenario Design
Net Zero Scenario Design

Level of Transformation by Measure

<table>
<thead>
<tr>
<th>Measure</th>
<th>Reference Scenario</th>
<th>Scenario 1: High Electrification</th>
<th>Scenario 2: High Decarbonized Fuels</th>
<th>Scenario 3: High Carbon Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Building Electrification</td>
<td>Low</td>
<td>Very High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Transit and Smart Growth</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Zero-Emission Vehicles</td>
<td>Low</td>
<td>Very High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Clean Electricity</td>
<td>High</td>
<td>Very High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Decarbonized Fuels</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Emissions Mitigation in Ag, Waste & Other</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Carbon Sequestration in Lands and Forests</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Negative Emissions Technologies</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Low</td>
</tr>
</tbody>
</table>
All three net zero scenarios have a similar trajectory for net GHG emissions

- All net zero scenarios are within 1% of the 2025 GHG target and exceed the 2030 target
- The exact trajectory will be highly dependent on the electricity sector, which will result from NCUC’s decision-making on the Carbon Plan

Many of the key differences between the net zero scenarios (e.g., electrification vs. decarbonized fuels vs. carbon storage) have a similar impact on the total net emissions shown here, but have different implications for the nature and timing of the energy system transition in North Carolina
Priority actions that impact emissions

Buildings
- Increased sales of high efficiency appliances
- Adoption of improved building shells in both new and retrofit buildings
- All-electric new construction standards
- Increased sales of electrified devices for all end uses (space and water heating, drying, cooking)

Clean Electricity
- Scale up of renewable electricity sources (wind and solar), and battery storage
- Targeted role for zero-carbon firm generation

Transportation
- Improved fuel economy for new vehicles sold
- Reductions in vehicle-miles traveled through transit and smart growth
- Increased sales of zero-emission vehicles (ZEVs), including, battery-electric and hydrogen fuel cell vehicles

Decarbonized Fuels
- Production of advanced biofuels with sustainable biomass feedstocks
- Production of green hydrogen through electrolysis using renewable electricity

Carbon Sequestration
- Reforestation and restoration to enhance carbon sinks from natural and working lands
- Deployment of negative emissions technologies such as direct air capture of CO2 (DAC)
North Carolina Greenhouse Gas Emissions Reduction Measures
Net Zero Scenario Ranges

- Rapidly ramp up sales of zero-emission vehicles across all vehicle classes
- Ramp up adoption of improved building shells and electric appliances
- All-electric new construction standards; all newly sold appliances are high-efficiency models
- 80-100% zero-emission passenger vehicle sales
- 50-100% electric bus sales; 35-70% zero-emission passenger vehicle sales; 0.8-2M ZEVs on the road
- 65-70% reduction in electric-sector GHG emissions below 2005 levels due to HB 951
- 80-100% zero-emission passenger vehicle sales
- 90-100% reduction in electric-sector GHG emissions
- 0-19% blend of advanced renewable natural gas; 0-77% blend of advanced renewable diesel; conversion of all coal combustion to hydrogen in industry
- 0-13 MMT CO2e of additional carbon sequestration through reforestation and DAC
- 80-100% electric appliances sales for all building end-uses; 33% of existing residential buildings are retrofitted
- 80-100% zero-emission vehicle sales in medium-and heavy-duty
- 0-13 MMT CO2e of additional carbon sequestration through reforestation and DAC

Draft and Preliminary
All mitigation scenarios meet net zero GHG emissions by 2050

- Gross (positive) emissions are reduced by 75-80% relative to 2005 in mitigation scenarios by 2050
- NC’s large natural carbon sinks are enough to offset the remaining gross emissions in all scenarios except for High Carbon Storage, where additional 9 MMT CO2e sequestration from direct air capture (DAC) is required to achieve net zero

The most reductions are coming from the electricity generation, transportation, and buildings sectors.

Largest remaining sources of emissions are non-energy, non-combustion sectors like agriculture and waste*, followed by hard to decarbonize sectors like industry and transportation

- Most remaining transportation emissions are from aviation and remaining diesel trucks that have not yet been retired

Remaining Emissions in 2050 by Scenario

2050 % gross GHG emissions reductions by sector vs 2005

<table>
<thead>
<tr>
<th>Sector</th>
<th>High Electrification (2050)</th>
<th>High Decarbonized Fuels (2050)</th>
<th>High Carbon Storage (2050)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Power</td>
<td>100%</td>
<td>100%</td>
<td>82%</td>
</tr>
<tr>
<td>Buildings</td>
<td>94%</td>
<td>92%</td>
<td>90%</td>
</tr>
<tr>
<td>Industrial</td>
<td>64%</td>
<td>65%</td>
<td>47%</td>
</tr>
<tr>
<td>Transportation</td>
<td>88%</td>
<td>88%</td>
<td>82%</td>
</tr>
<tr>
<td>Non-Energy</td>
<td>-12%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Footnote: waste emissions increase based on the annual growth rate used in the 2022 NC GHG Inventory projection through 2030, with a small reduction (15%) relative to Reference in 2050 based on the technical potential modeled by EPA in their state-level assessment.
There are multiple pathways to meeting the NC’s 2030 and 2050 climate targets.

The commonalities across all scenarios represent near-term opportunities for “no-regret” actions:

1. Accelerate a transition to zero-emission vehicles and electric heat pumps in buildings
2. Rapidly decarbonize electricity generation by scaling up renewable electricity sources and battery storage
3. Encourage high levels of energy efficiency, such as adoption of efficient appliances and vehicles, improvement of building shells and reduction in vehicle miles traveled
4. Support commercialization of decarbonized fuels, at a minimum to green hydrogen for industry and large trucks, and exploring pilots for advanced biofuels using sustainable biomass feedstocks
5. Reduce non-energy GHG emissions from industry, agriculture, waste, and oil and gas systems
6. Prioritize sustainable management of natural and working lands to enhance the critical role of carbon sequestration in helping achieve net zero emissions
7. Center environmental justice and equity in program design and local implementation
Summary of Preliminary Findings – 1/4

1. **Accelerate electrification of transportation** (zero-emission vehicles) and **buildings** (heat pumps, electric cooktops, etc.)
 - Electricity becomes the foremost fuel powering the economy, meeting 60%-70% of all energy demand

2. **Rapidly decarbonize electricity generation** by scaling up renewable electricity sources and battery storage
 - Emissions intensity of electricity generation decreases by 93%-100% by 2050
Summary of Preliminary Findings – 2/4

3. Encourage high levels of energy efficiency, such as adoption of efficient appliances and vehicles, improvement of building shells, and reduction in VMT
 - Energy use per capita decreases by ~45% by 2050, while meeting the same services
 - Electric vehicles and heat pumps can be 3-4x as efficient as current fossil-powered options

4. Support commercialization of decarbonized fuels, at a minimum to green hydrogen for industry and large trucks, but also potential for advanced biofuels using sustainable biomass feedstocks
 - Decarbonized fuels serve a critical but targeted role for hard-to-electrify sectors, reaching 3%-12% of energy demand
Implement strategies to reduce non-energy greenhouse gas emissions from industry, agriculture, waste, and oil and gas systems

- These sectors are some of the most challenging to mitigate at reasonable costs, but can achieve 12% reductions in 2050 vs. the Reference trajectory

Prioritize sustainable management of natural and working lands to enhance the critical role of carbon sequestration in helping achieve net zero emissions

- North Carolina’s natural carbon sink plays a critical role and when combined with Direct Air Capture can lead to an additional 10 MMT of annual sequestration in 2050

*Includes emission sequestration from natural and working lands, as well as negative emission technologies such as Direct Air Capture (DAC)
7 Center environmental justice and equity in program design and local implementation. This analysis focuses on statewide emissions, but highlights key opportunities:

- Improving air quality by reducing fuel combustion
 - Petroleum combustion is reduced ~80% by 2050 vs. today, natural gas combustion is reduced 50-70%, and coal combustion in industry is reduced by 100%
- Ensuring new technologies are affordable, especially electric vehicles and electric heat pumps
- Creating an accessible electric vehicle charging and transit network, prioritizing underserved areas and maximizing local air quality benefits in communities that have a disproportionate share of fuel combustion impacts

Reference

Net Zero Scenarios

Petroleum Combustion* - TBtu

Natural Gas Combustion* - TBtu

Coal Combustion - TBtu

*Renewable petroleum and renewable natural gas are included in combustion totals due to similar air pollution impacts of these fuels
How can you stay engaged?

+ Feedback is welcome:
 • What do you think about the draft decarbonization scenarios?
 • What concerns do you have and what challenges do you expect in North Carolina reaching the climate goals?
 • What additional considerations would you recommend for the NC Pathways Analysis?
 • Feedback can be submitted by October 31st to contactgov@nc.gov
 • Website to stay up to speed on the Pathways and learn more: https://governor.nc.gov/issues/environment

+ Next Steps:
 • E3 will finalize the mitigation scenarios
 • E3 will present final mitigation scenario results at the next public meeting (TBD in December)
Appendix
Members of the Technical Advisory Group

- **Academic Research**
 - Brian Murray - Interim Director, Nicholas Institute and Duke University Energy Initiative
 - Jeremiah Johnson - Associate Professor, NC State University
 - Robert Cox - Associate Director, UNC Charlotte Energy Production and Infrastructure Center

- **Power Sector**
 - Mark McIntire - Director of Government Affairs, Energy and the Environment and Stakeholder Engagement, Duke Energy
 - Michael Youth - Government and Regulatory Affairs Counsel, North Carolina’s Electric Cooperatives
 - Ward Lenz - Executive Director, NC Sustainable Energy Association

- **Transportation Sector**
 - Catherine Kummer - Sustainability, Resiliency and Governmental Affairs Officer, Charlotte Area Transit System
 - Heather Brutz - Transportation Finance and Operations Manager, NC Clean Energy Technology Center

- **Residential, Commercial, and Industrial**
 - Kevin Martin - Executive Director, Carolina Utility Customers Association
 - Ross Smith - President, NC Manufacturers Alliance
 - Thomas Phoenix - Principal, CPL Architects and Engineers

- **Land Use, Land-Use Change and Forestry**
 - Justin Baker - Associate Professor, NC State University
 - Lydia Olander - Director of the Ecosystem Services Program, Duke University

- **Public Interest**
 - Al Ripley - Director, Consumer, Housing & Energy Project, NC Justice Center
 - Amanda Levin - Interim Director of Policy Analysis, Natural Resources Defense Council
 - Sherri White-Williamson - Environmental Justice Policy Director, NC Conservation Network
The NC PATHWAYS model is fully benchmarked to the latest NC State GHG Inventory (released January 2022 by the NC Department of Environmental Quality)

- Both GHG emissions and final energy demand are consistent with the analysis supporting the NC GHG Inventory

- Total emissions in PATHWAYS are within <1% of NC Inventory
Reference Scenario Draft Results:
GHG Emissions by Sector

GHG Emissions by Sector

<table>
<thead>
<tr>
<th>Sector</th>
<th>MMT CO₂e*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Power</td>
<td>0</td>
</tr>
<tr>
<td>Residential</td>
<td>0</td>
</tr>
<tr>
<td>Commercial</td>
<td>0</td>
</tr>
<tr>
<td>Industrial</td>
<td>1</td>
</tr>
<tr>
<td>Transportation</td>
<td>-4</td>
</tr>
<tr>
<td>Agriculture</td>
<td>0</td>
</tr>
<tr>
<td>IPPU</td>
<td>-5</td>
</tr>
<tr>
<td>Oil & Gas</td>
<td>0</td>
</tr>
<tr>
<td>Waste</td>
<td>0</td>
</tr>
<tr>
<td>LULUCF</td>
<td>0</td>
</tr>
<tr>
<td>Net Total</td>
<td>-8</td>
</tr>
</tbody>
</table>

*Rounded to nearest 1 MMT CO₂e, totals may not sum to Net Total due to rounding.
The Inflation Reduction Act contains many provisions that will impact energy and technology costs across virtually all sectors of the economy over the coming years;

• However, early external analyses provide only high-level estimates of national impacts

Upon discussion with the Governor’s Office, E3 is modeling our own assumptions on IRA impacts for key demand-side sectors/technologies (details in appendix):

<table>
<thead>
<tr>
<th>Direct IRA Impacts Added to Reference</th>
<th>IRA Impacts Not Explicitly Added</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adoption of residential heat pumps</td>
<td>• Clean electricity generation - HB 951 is already modeled with deep reductions in electricity sector emissions and there is no detailed electric sector modeling included in this project</td>
</tr>
<tr>
<td>Adoption of zero-emission medium-heavy-duty vehicles</td>
<td>• Adoption of zero-emission light-duty vehicles - there is a lot of uncertainty with eligibility for the new EV tax incentives and our initial analysis showed a likely small impact relative to current assumptions</td>
</tr>
<tr>
<td>Hydrogen fuel-switching</td>
<td>• Industry CCS incentives and methane fee – there is almost no eligible industry and activity in NC</td>
</tr>
<tr>
<td></td>
<td>• Important to narratively highlight that IRA provisions will make existing electricity sector decarbonization requirements in North Carolina more cost-effective along with many other decarbonization measures</td>
</tr>
</tbody>
</table>
NC PATHWAYS Key Drivers

<table>
<thead>
<tr>
<th>Sector</th>
<th>Key Driver for Underlying Growth</th>
<th>Key Driver Annual Growth Rate</th>
<th>Key Driver Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Households</td>
<td>1.6%</td>
<td>NC Office of State Budget and Management & U.S. Energy Information Administration (EIA) Annual Energy Outlook 2022</td>
</tr>
<tr>
<td>Commercial</td>
<td>Commercial Sq. Footage</td>
<td>1.0%</td>
<td>EIA Annual Energy Outlook 2022</td>
</tr>
<tr>
<td>Transportation</td>
<td>VMT*</td>
<td>0.8% (avg across vehicle classes)</td>
<td>NC Department of Environmental Quality Motor Vehicle Emission Simulator 3 (MOVES3) modeling used for NC Greenhouse gas (GHG) Inventory</td>
</tr>
<tr>
<td>Industrial</td>
<td>Industrial Fuel Use</td>
<td>Varies by Fuel</td>
<td>EIA Annual Energy Outlook 2022</td>
</tr>
<tr>
<td>Land-Use, Land-Use Change, and Forestry (LULUCF)</td>
<td>Annual CO₂ flux</td>
<td>TBD</td>
<td>Currently held constant at 2018 levels per NC GHG Inventory Projection</td>
</tr>
<tr>
<td>Electricity Generation**</td>
<td>Annual load growth</td>
<td>TBD</td>
<td>Bottom-up estimates from assumptions in buildings, transportation, and industry</td>
</tr>
</tbody>
</table>

*VMT reported here as average, but individual growth rates are used for each vehicle type in PATHWAYS (e.g., Light Duty Cars, Medium and Heavy Duty Trucks, Buses)

**Detailed electricity generation modeling not included in this analysis
Net Zero Scenarios Key Assumptions and Results

Buildings

<table>
<thead>
<tr>
<th>Measure</th>
<th>High Electrification</th>
<th>High Decarbonized Fuels</th>
<th>High Carbon Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency</td>
<td>• All newly sold appliances are high efficiency models by 2030</td>
<td>• Adoption of latest IECC 2021 building code for new construction</td>
<td>• One-third of existing residential buildings are retrofitted by 2040 (based on ACEEE NC report)</td>
</tr>
<tr>
<td>Electrification</td>
<td>• All-electric new construction standard by 2030</td>
<td>• 100% sales of electrified devices for all end uses (space and water heating, drying, cooking) by 2040</td>
<td>• All-electric new construction standard by 2040</td>
</tr>
<tr>
<td></td>
<td>• 100% sales of electrified devices for all end uses (space and water heating, drying, cooking) by 2040</td>
<td></td>
<td>• 100% sales of electrified devices for all end uses (space and water heating, drying, cooking) by 2045, with some sales of hybrid heat pumps for homes that have existing gas furnaces</td>
</tr>
<tr>
<td>Renewable Natural Gas</td>
<td>None</td>
<td>18% RNG blend by 2050</td>
<td>None</td>
</tr>
</tbody>
</table>

Graphs

- **High Electrification**
 - Natural Gas
 - Electricity

- **High Decarbonized Fuels**
 - Natural Gas
 - Electricity

- **High Carbon Storage**
 - Natural Gas
 - Electricity

Graphs show final energy demand (TWh) from 2018 to 2050.
Net Zero Scenarios Key Assumptions and Results

<table>
<thead>
<tr>
<th>Measure</th>
<th>High Electrification</th>
<th>High Decarbonized Fuels</th>
<th>High Carbon Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMT Reductions</td>
<td>1.2% reduction in statewide VMT below BAU levels by 2040 based on NC DOT VMT Reduction Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDV ZEVs</td>
<td>100% ZEV sales by 2035</td>
<td>100% ZEV sales by 2045</td>
<td></td>
</tr>
<tr>
<td>MHDV ZEVs</td>
<td>100% ZEV sales by 2045 (90/10 split for BEV/HFCV)</td>
<td>100% ZEV sales by 2050 (75/25 split for BEV/HFCV)</td>
<td></td>
</tr>
<tr>
<td>Off-road Gasoline and Diesel Electrification</td>
<td>Electrify gasoline and diesel at same rate as MHDV</td>
<td>Electrify gasoline and diesel at same rate as MHDV</td>
<td></td>
</tr>
<tr>
<td>Renewable Diesel</td>
<td>None</td>
<td>77% renewable diesel blend by 2050</td>
<td>None</td>
</tr>
</tbody>
</table>

Graphs

- **High Electrification**
 - Gasoline: Decrease in demand, with a shift towards electricity.
 - Diesel: Decrease in demand, with a shift towards electricity.

- **High Decarbonized Fuels**
 - Gasoline: Decrease in demand, with a shift towards renewable diesel blend.
 - Diesel: Decrease in demand, with a shift towards renewable diesel blend.

- **High Carbon Storage**
 - Gasoline: Decrease in demand, with a shift towards other sources.

Key Points:
- **Electricity** increases through 2050 for renewable diesel.
- 77% renewable diesel blend by 2050 for high decarbonized fuels.
Net Zero Scenarios Key Assumptions and Results

<table>
<thead>
<tr>
<th>Measure</th>
<th>High Electrification</th>
<th>High Decarbonized Fuels</th>
<th>High Carbon Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Energy Efficiency</td>
<td>16% reduction in manufacturing energy demand through efficiency by 2050 based on ACEEE Halfway There report</td>
<td>Electrify natural gas use for process heat based on NREL Electrification Futures Study High Electrification scenario</td>
<td></td>
</tr>
<tr>
<td>Natural Gas Electrification</td>
<td>Electrify natural gas use for process heat based on NREL Electrification Futures Study Medium Electrification scenario</td>
<td>Electrify natural gas use for process heat based on NREL Electrification Futures Study Medium Electrification scenario</td>
<td></td>
</tr>
<tr>
<td>Liquid Fuels Electrification</td>
<td>Electrify gasoline and diesel at same rate as MHDV</td>
<td>Electrify gasoline and diesel at same rate as MHDV</td>
<td></td>
</tr>
<tr>
<td>H2 Fuel-switching</td>
<td>9% of natural gas and all coal is converted to H2 combustion by 2050</td>
<td>22% of natural gas and all coal is converted to H2 combustion by 2050</td>
<td>9% of natural gas and all coal is converted to H2 combustion by 2050</td>
</tr>
<tr>
<td>Advanced Biofuels</td>
<td>None</td>
<td>18% renewable natural gas blend and 77% renewable diesel blend by 2050</td>
<td>None</td>
</tr>
</tbody>
</table>

Energy Demand Trends

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>...</td>
</tr>
<tr>
<td>2022</td>
<td>...</td>
</tr>
<tr>
<td>2026</td>
<td>...</td>
</tr>
<tr>
<td>2030</td>
<td>...</td>
</tr>
<tr>
<td>2040</td>
<td>...</td>
</tr>
<tr>
<td>2050</td>
<td>...</td>
</tr>
</tbody>
</table>

Note: The figures represent the final energy demand for each sector over time.
Net Zero Scenarios Key Assumptions and Results
Non-energy & non-combustion

<table>
<thead>
<tr>
<th>Measure</th>
<th>High Electrification</th>
<th>High Decarbonized Fuels</th>
<th>High Carbon Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Management Methane Reductions</td>
<td>Reductions available below $100/tCO2e from 2019 EPA Non-CO2 Report (e.g., landfill gas recovery), results in ~10% reduction below BAU by 2050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture Methane and N2O Reductions</td>
<td>Reductions available below $100/tCO2e from 2019 EPA Non-CO2 Report (e.g., manure methane recovery, nitrogenous fertilizer management), results in ~20% reduction below BAU by 2050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPPU: HFC Phasedown</td>
<td>HFC phasedown in line with new EPA HFC Allowance Allocation and Trading Program, results in 63% reduction in IPPU emissions below 2018 levels by 2050 (also included in Reference Scenario)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All Net Zero Scenarios

![Graph showing GHG emissions (MMT CO2e) from 2018 to 2050 for Agriculture, IPPU, and Waste categories](image-url)
Net Zero Scenarios Key Assumptions and Results

Carbon Sequestration

<table>
<thead>
<tr>
<th>Measure</th>
<th>High Electrification</th>
<th>High Decarbonized Fuels</th>
<th>High Carbon Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use and Land Use Change and Forestry (LULUCF)</td>
<td>Existing sequestration declines slightly over time due to projected loss of forests and sea level rise impacts (~2.5 MMT CO2e reduction in net sequestration by 2050)</td>
<td>None required</td>
<td>~4 MMT CO2e of incremental sequestration beyond Reference scenario levels in 2050 due to reforestation and restoration of saline tidal flows</td>
</tr>
<tr>
<td>Negative-Emissions Technologies (NETs)</td>
<td>None required</td>
<td>None required</td>
<td>~9 MMT of DAC required to achieve net zero</td>
</tr>
</tbody>
</table>

Charts

High Electrification / High Decarbonized Fuels

- Existing Natural Sinks

High Carbon Storage

- Existing Natural Sinks
- Incremental Natural Sinks
- Direct Air Capture

Source: Energy Environmental Economics
Net Zero Scenarios Key Assumptions and Results

Electricity Generation

<table>
<thead>
<tr>
<th>Measure</th>
<th>High Electrification</th>
<th>High Decarbonized Fuels</th>
<th>High Carbon Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Electricity</td>
<td>70% reduction in emissions by 2030, 100% by 2050 (HB 951 reduction levels but for all sources, not just IOU sources)</td>
<td>70% reduction in emissions by 2030, 100% by 2050 for IOU sources only</td>
<td>Non-IOU sources and imports have a 51% reduction in emissions intensity by 2050 based on EIA Reference Case</td>
</tr>
</tbody>
</table>

High Electrification / High Decarbonized Fuels

- GHG Emissions (MMT CO2e)

High Carbon Storage

- Imported Electricity
- In-State Generation (Other Facilities)
- In-State Generation (HB 951 Facilities)
Key Metrics by Scenario

Electricity Demand (TWh)

Decarbonized Fuel Demand (TBtu)

Carbon Sequestration (MMT CO2)

High Electrification
- Transportation
- Industry
- Buildings

High Decarbonized Fuels
- Hydrogen
- Advanced Biofuels
- Conventional Biofuels

High Carbon Storage
- Hydrogen
- Advanced Biofuels
- Conventional Biofuels

Existing Electric End-Uses

Draft and Preliminary
One strategy for reducing GHG emissions in PATHWAYS scenarios is to replace fossil fuels with advanced biofuels, which are assumed to be carbon-neutral and chemically identical to fossil fuels. These advanced biofuels are distinct from conventional biofuels like ethanol and biodiesel, which have sustainability concerns in terms of lifecycle GHG emissions and have blend limits due to being chemically different from fossil fuels.

Despite advance biofuels being treated as carbon-neutral when it comes to GHG emissions in PATHWAYS, there are other important considerations for their use, including:

- **Air pollution** – advanced biofuels produce similar levels of criteria air pollutants as fossil fuels.
- **Market development** – advanced biofuels production is very limited today, with most biofuels markets focused on conventional biofuels.
- **Land use and other sustainability concerns** – growing biomass specifically for use in advanced biofuels could potentially displace land used for food production or other economic needs, and the energy required to produce advanced biofuels could potentially come from fossil fuels.

Because of these factors, we typically assume that advanced biofuels will play a targeted role in any net zero future and are best used for applications where electrification or other decarbonization strategies are challenging (e.g., as renewable jet fuel for airplanes).
To estimate what feedstocks will be available in the future for processing into advanced biofuels, E3 relies on the 2016 Billion Ton Report from the Department of Energy.

The feedstocks quantified in the Billion Ton Report can be grouped into two broad categories:

1. **Wastes and residues** that are byproducts of existing agricultural practices or economic activities and require no additional agronomic inputs such as land or fertilizer (e.g., manure, landfills, forest thinning).

2. **Dedicated energy crops** that are grown primarily for conversion into fuel and require additional cultivation of land that would otherwise not occur.

In the PATHWAYS scenarios developed for North Carolina, E3 chose to only consider wastes and residues due to sustainability concerns around the lifecycle GHG emissions of dedicated energy crops.

- Note: This climate sustainability screening does not consider other potentially important criteria, such as local pollution impacts of agricultural practices or economic activities.
Technology Readiness & Risks
Identifying Risks in an Uncertain Future

+ Developing scenarios across a 30-year time horizon includes many uncertainties and risks, including:

 • Customer adoption risk
 - Widespread adoption of zero-emission vehicles will require affordable model options, accessible charging infrastructure, and large-scale technology acceptance
 • Commercialization risk
 - Decarbonization scenarios rely on technologies with varying levels of commercialization, or readiness.
 - IEA has established a Technology Readiness Level (TRL) scale for decarbonization measures.
 - A technology with a TRL of 11 is ready to scale, options lower than that need R&D and/or commercialization support.
 - Portfolios of decarbonization options that rely on lower TRL measures carry additional risk.
 - E3 and other deep decarbonization researchers generally screen out technologies that are low (<5) on the TRL scale because of their speculative nature and the short time horizon of mid-century climate goals.

![Commercialization Risk through TRLs](Credit: International Energy Agency)
Technology Readiness & Risks

<table>
<thead>
<tr>
<th>Electric Appliances in Buildings</th>
<th>Today’s TRL</th>
<th>Expected timing of technology ramp-up in scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air-source heat pumps (ASHPs) in all scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASHPs for Res/Small Commercial</td>
<td>10</td>
<td>2020 to 2050</td>
</tr>
<tr>
<td>ASHPs for Large Commercial</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zero-Emission Vehicles</th>
<th>Today’s TRL</th>
<th>Expected timing of technology ramp-up in scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-emission light-duty vehicles (LDVs) and zero-emission medium-and-heavy-duty vehicles (MHDVs) in all scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery-electric LDVs</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Battery-electric MHDVs</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Fuel-cell MHDVs</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Renewable Electricity</th>
<th>Today’s TRL</th>
<th>Expected timing of technology ramp-up in scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>In all scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar PV, wind and grid-scale Li-ion battery storage</td>
<td>9 - 10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decarbonized Fuels</th>
<th>Today’s TRL</th>
<th>Expected timing of technology ramp-up in scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green hydrogen In all scenarios for hydrogen fuel-cell vehicles and industry; renewable natural gas (RNG) and renewable diesel in High Decarbonized Fuels scenario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Hydrogen through alkaline electrolysis</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>RNG through bio-gasification</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Renewable diesel through pyrolysis</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative Emissions Technologies</th>
<th>Today’s TRL</th>
<th>Expected timing of technology ramp-up in scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the High Carbon Storage scenario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct air capture</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Footnote: TRLs are based on values from an [IEA database](https://www.iea.org), modified in some cases by E3 based on our professional judgement, including an assessment of geographic context.